Male Income Inequality & Female Marital Outcomes
Evidence from India

A.V. Chari Annemie Maertens Sinduja V. Srinivasan

APPAM International Conference, Segovia

September 29-30, 2014
Motivation

Increasing income inequality in India
Motivation

Increasing income inequality in India
Motivation

Increasing income inequality in India

And women’s age at marriage rising
Motivation

Increasing income inequality in India

And women’s age at marriage rising
Motivation

Increasing income inequality in India

And women’s age at marriage rising

How are two trends related?
Does male income income affect female marital outcomes?

- Increased (upper tail) earnings inequality: Women delay marriage
 - Marriage propensity decreases by 2 percentage points
 - Age at marriage increases by 0.4 years
- While searching, women remain in school
 - Women get additional 0.6 years of education
 - Complete high school; Matriculate into college
Does male income income affect female marital outcomes?

Increased (upper tail) earnings inequality: Women delay marriage
Does male income income affect female marital outcomes?

Increased (upper tail) earnings inequality: Women delay marriage

- Marriage propensity decreases by 2 percentage points

While searching, women remain in school
- Women get additional 0.6 years of education
- Complete high school; Matriculate into college
Does male income affect female marital outcomes?

Increased (upper tail) earnings inequality: Women delay marriage

- Marriage propensity decreases by 2 percentage points
- Age at marriage increases by 0.4 years
Does male income income affect female marital outcomes?

Increased (upper tail) earnings inequality: Women delay marriage

- Marriage propensity decreases by 2 percentage points
- Age at marriage increases by 0.4 years

While searching, women remain in school
Does male income income affect female marital outcomes?

Increased (upper tail) earnings inequality: Women delay marriage

- Marriage propensity decreases by 2 percentage points
- Age at marriage increases by 0.4 years

While searching, women remain in school

- Women get additional 0.6 years of education
Does male income income aect female marital outcomes?

Increased (upper tail) earnings inequality: Women delay marriage

- Marriage propensity decreases by 2 percentage points
- Age at marriage increases by 0.4 years

While searching, women remain in school

- Women get additional 0.6 years of education
- Complete high school; Matriculate into college
Overview

Motivation
Overview

Motivation

Model: Marital Search

Data: Indian Human Development Survey (2005)
Overview

Motivation

Model: Marital Search

Data: Indian Human Development Survey (2005)

Empirical Strategy
Overview

Motivation

Model: Marital Search

Data: Indian Human Development Survey (2005)

Empirical Strategy

Results: Impact of male income inequality on female marital outcomes
· Educational attainment
Overview

Motivation

Model: Marital Search

Data: Indian Human Development Survey (2005)

Empirical Strategy

Results: Impact of male income inequality on female marital outcomes
 · Educational attainment

Summary & Conclusion
Model & Data

Woman faces male earnings distribution: accepts or rejects offer of

\[R \cdot q \cdot \text{Search time (age at marriage)} \]

Rising inequality often asymmetric

- Upper-tail inequality increases \(R \) and search time for most women
- Inequality in lower-tail will not affect most women

Indian Human Development Survey (2005): nationally representative

- Full sample: Impact on marital status (probability)
- Ever-married sample: Impact on age at marriage

Measures

- Male earnings: Outside earnings + farm/business income
- Earnings distribution: Eligible men in each marriage market
- \(\rightarrow \) Unmarried; ages 18-35; not enrolled in school

Marriage markets: Community (caste) and state
- Exploits regional and occupational earnings differences
Model

Woman faces male earnings distribution
Model

Woman faces male earnings distribution: accepts or rejects offer of x
Model

Woman faces male earnings distribution: accepts or rejects offer of $x \rightarrow$
- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$
Model

Woman faces male earnings distribution: accepts or rejects offer of $x \rightarrow$
- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$

Rising inequality often asymmetric
Model

Woman faces male earnings distribution: accepts or rejects offer of $x \rightarrow$

- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$

Rising inequality often asymmetric
Model

Woman faces male earnings distribution: accepts or rejects offer of $x →$
- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$

Rising inequality often asymmetric
- Upper-tail inequality increases R and search time for most women
Model

Woman faces male earnings distribution: accepts or rejects offer of $x \rightarrow$
- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$

Rising inequality often asymmetric
- Upper-tail inequality increases R and search time for most women
- Inequality in lower-tail will not affect most women
Woman faces male earnings distribution: accepts or rejects offer of \(x \rightarrow R \)
- Reservation earnings level \(R \)
- Probability of marriage \(q \)
- Search time (age at marriage) \(\frac{1}{q} \)

Rising inequality often asymmetric
- Upper-tail inequality increases \(R \) and search time for most women
- Inequality in lower-tail will not affect most women

Indian Human Development Survey (2005): nationally representative
Model & Data

Woman faces male earnings distribution: accepts or rejects offer of $x \rightarrow$
- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$

Rising inequality often asymmetric
- Upper-tail inequality increases R and search time for most women
- Inequality in lower-tail will not affect most women

Indian Human Development Survey (2005): nationally representative
- Full sample: Impact on marital status (probability)
- Ever-married sample: Impact on age at marriage
Model & Data

Woman faces male earnings distribution: accepts or rejects offer of $x \to$
- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$

Rising inequality often asymmetric
- Upper-tail inequality increases R and search time for most women
- Inequality in lower-tail will not affect most women

Indian Human Development Survey (2005): nationally representative
- Full sample: Impact on marital status (probability)
- Ever-married sample: Impact on age at marriage

Measures
- Male earnings: Outside earnings + farm/business income
- Earnings distribution: Eligible men in each marriage market
Model & Data

Woman faces male earnings distribution: accepts or rejects offer of $x \rightarrow$

- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$

Rising inequality often asymmetric

- Upper-tail inequality increases R and search time for most women
- Inequality in lower-tail will not affect most women

Indian Human Development Survey (2005): nationally representative

- Full sample: Impact on marital status (probability)
- Ever-married sample: Impact on age at marriage

Measures

- Male earnings: Outside earnings + farm/business income
- Earnings distribution: Eligible men in each marriage market

Unmarried; ages 18-35; not enrolled in school
Model & Data

Woman faces male earnings distribution: accepts or rejects offer of $x \rightarrow$
- Reservation earnings level R
- Probability of marriage q
- Search time (age at marriage) $\frac{1}{q}$

Rising inequality often asymmetric
- Upper-tail inequality increases R and search time for most women
- Inequality in lower-tail will not affect most women

Indian Human Development Survey (2005): nationally representative
- Full sample: Impact on marital status (probability)
- Ever-married sample: Impact on age at marriage

Measures
- Male earnings: Outside earnings + farm/business income
- Earnings distribution: Eligible men in each marriage market
 \leftarrow Unmarried; ages 18-35; not enrolled in school

Marriage markets: Community (caste) and state
- Exploits regional and occupational earnings differences

Descriptives
Empirical Strategy

Full sample: Regress marital status on male earnings inequality (LPM)
Empirical Strategy

Full sample: Regress marital status on male earnings inequality (LPM)
\[y_{ics} = \beta_1 (e^{90} - e^{50})_{cs} + \beta_2 (e^{50} - e^{10})_{cs} + \beta_3 e^{50}_{cs} + \gamma Age_{ics} + \eta_c + \eta_s + u_{ics} \]
Empirical Strategy

Full sample: Regress marital status on male earnings inequality (LPM)

\[y_{ics} = \beta_1 (e^{90} - e^{50})_{cs} + \beta_2 (e^{50} - e^{10})_{cs} + \beta_3 e^{50}_{cs} + \gamma Age_{ics} + \eta_c + \eta_s + u_{ics} \]

\[y_{ics} = 1 \text{ if woman } i \text{ in community } c \text{ and state } s \text{ is married} \]
Empirical Strategy

Full sample: Regress marital status on male earnings inequality (LPM)

\[y_{ics} = \beta_1 (e^{90} - e^{50})_{cs} + \beta_2 (e^{50} - e^{10})_{cs} + \beta_3 e^{50}_{cs} + \gamma Age_{ics} + \eta_c + \eta_s + u_{ics} \]

\[y_{ics} = 1 \text{ if woman } i \text{ in community } c \text{ and state } s \text{ is married} \]

\((e^{90} - e^{50})_{cs}, (e^{50} - e^{10})_{cs} \): male earnings inequality measures
Empirical Strategy

Full sample: Regress marital status on male earnings inequality (LPM)

\[y_{ics} = \beta_1(e^{90} - e^{50})_{cs} + \beta_2(e^{50} - e^{10})_{cs} + \beta_3 e_{cs}^{50} + \gamma \text{Age}_{ics} + \eta_c + \eta_s + u_{ics} \]

\[y_{ics} = 1 \text{ if woman } i \text{ in community } c \text{ and state } s \text{ is married} \]

\((e^{90} - e^{50})_{cs}, (e^{50} - e^{10})_{cs} \): male earnings inequality measures

\(e_{cs}^{50} \): male earnings distribution location
Empirical Strategy

Full sample: Regress marital status on male earnings inequality (LPM)

\[y_{ics} = \beta_1(e^{90} - e^{50})_{cs} + \beta_2(e^{50} - e^{10})_{cs} + \beta_3 e^{50}_{cs} + \gamma Age_{ics} + \eta_c + \eta_s + u_{ics} \]

\[y_{ics} = 1 \text{ if woman } i \text{ in community } c \text{ and state } s \text{ is married} \]

\[(e^{90} - e^{50})_{cs}, (e^{50} - e^{10})_{cs} : \text{ male earnings inequality measures} \]

\[e^{50}_{cs} : \text{ male earnings distribution location} \]

\[Age_{ics} : \text{ individual’s age} \]
Empirical Strategy

Full sample: Regress marital status on male earnings inequality (LPM)

\[y_{ics} = \beta_1 (e^{90} - e^{50})_{cs} + \beta_2 (e^{50} - e^{10})_{cs} + \beta_3 e^{50}_{cs} + \gamma Age_{ics} + \eta_c + \eta_s + u_{ics} \]

\[y_{ics} = 1 \text{ if woman } i \text{ in community } c \text{ and state } s \text{ is married} \]

\((e^{90} - e^{50})_{cs}, (e^{50} - e^{10})_{cs} \): male earnings inequality measures

\(e^{50}_{cs} \): male earnings distribution location

\(Age_{ics} \): individual’s age

\(\eta_c \): community fixed effects; \(\eta_s \): state fixed effects
Empirical Strategy

Full sample: Regress marital status on male earnings inequality (LPM)

\[y_{ics} = \beta_1(e^{90} - e^{50})_{cs} + \beta_2(e^{50} - e^{10})_{cs} + \beta_3 e^{50}_{cs} + \gamma Age_{ics} + \eta_c + \eta_s + u_{ics} \]

\[y_{ics} = 1 \text{ if woman } i \text{ in community } c \text{ and state } s \text{ is married} \]

\((e^{90} - e^{50})_{cs}, (e^{50} - e^{10})_{cs} : \text{ male earnings inequality measures}\]

\(e^{50}_{cs} : \text{ male earnings distribution location}\]

\(Age_{ics} : \text{ individual’s age}\]

\(\eta_c : \text{ community fixed effects}; \eta_s : \text{ state fixed effects}\]

\(u_{ics} : \text{ error}\]
Empirical Strategy

Ever-married sample: Regress age at marriage on male earnings inequality

\[\text{AgeMarriage}_{ics} = \beta_1 (e^{90} - e^{50})_{cs} + \beta_2 (e^{50} - e^{10})_{cs} + \beta_3 e^{50}_{cs} + \eta_c + \eta_s + u_{ics} \]

\(\text{AgeMarriage}_{ics} \): age at marriage for woman \(i \) in caste \(c \) and state \(s \)
\((e^{90} - e^{50})_{cs}, (e^{50} - e^{10})_{cs} \): male earnings inequality measures
\(e^{50}_{cs} \): male earnings distribution location
\(\text{Age}_{ics} \): individual’s age
\(\eta_c \): community fixed effects; \(\eta_s \): state fixed effects
\(u_{ics} \): error
↑ Male income inequality: ↓ Female marriage rates

Driven by upper-half inequality

<table>
<thead>
<tr>
<th>Male earnings: 90^{th}-50^{th} percentile</th>
<th>Probability of marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 50^{th}-10^{th} percentile</td>
<td>-0.007 *** (0.009)</td>
</tr>
<tr>
<td>Male earnings: 50^{th} percentile</td>
<td>0.014 (0.013)</td>
</tr>
<tr>
<td>Age of woman (years)</td>
<td>0.068 *** (0.001)</td>
</tr>
<tr>
<td>Community fixed effects?</td>
<td>Yes</td>
</tr>
<tr>
<td>State fixed effects?</td>
<td>Yes</td>
</tr>
<tr>
<td>N (women)</td>
<td>25,550</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.451</td>
</tr>
</tbody>
</table>
↑ Male income inequality: ↓ Female marriage rates; ↑ Age at marriage

Driven by upper-half inequality

<table>
<thead>
<tr>
<th>Probability of marriage</th>
<th>Age at marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: $90^{th-50^{th}}$ percentile</td>
<td>-0.016***</td>
</tr>
<tr>
<td>Male earnings: $50^{th-10^{th}}$ percentile</td>
<td>-0.007</td>
</tr>
<tr>
<td>Male earnings: 50^{th} percentile</td>
<td>0.014</td>
</tr>
<tr>
<td>Age of woman (years)</td>
<td>0.068***</td>
</tr>
<tr>
<td>Community fixed effects?</td>
<td>Yes</td>
</tr>
<tr>
<td>State fixed effects?</td>
<td>Yes</td>
</tr>
<tr>
<td>N (women)</td>
<td>25,550</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.451</td>
</tr>
</tbody>
</table>
Testing alternative hypotheses

AH1: Are men searching longer for women? No
AH2: Are women different across high- and low-inequality markets? No
AH3: Are men absent from marriage market? No
AH4: Are male earnings proxying for (expected) female earnings? No
AH5: Are marriages delayed due to wedding expenditures (do they)? No
AH1: Are men searching longer for women?

No
Testing alternative hypotheses

AH1: Are men searching longer for women? No

AH2: Are women different across high- and low-inequality markets? No
Testing alternative hypotheses

AH1: Are men searching longer for women? No

AH2: Are women different across high- and low-inequality markets? No

AH3: Are men absent from marriage market? No
Testing alternative hypotheses

AH1: Are men searching longer for women? No
AH2: Are women different across high- and low-inequality markets? No
AH3: Are men absent from marriage market? No
AH4: Are male earnings proxying for (expected) female earnings? No
Testing alternative hypotheses

AH1: Are men searching longer for women? No
AH2: Are women different across high- and low-inequality markets? No
AH3: Are men absent from marriage market? No
AH4: Are male earnings proxying for (expected) female earnings? No
AH5: Are marriages delayed due to wedding expenditures (dowry)? No
Human capital implications of delayed marriage (ever-married sample)

Impact on completed years of education

\[\text{EduYears} = \beta_1 (e_{90} - e_{50}) + \beta_2 (e_{50} - e_{10}) + \beta_3 e_{50} + \eta_c + \eta_s + u \]

Identify level where additional education accrues

\[\text{level} = \beta_1 (e_{90} - e_{50}) + \beta_2 (e_{50} - e_{10}) + \beta_3 e_{50} + \eta_c + \eta_s + u \]

Women attain more education, at high school/college

- Women accrue 0.6 additional years of education
- Complete high school; Matriculate into college

<table>
<thead>
<tr>
<th>Years of education</th>
<th>Male earnings: 90th-50th percentile</th>
<th>Male earnings: 50th-10th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any education</td>
<td>5+ years</td>
<td>8+ years</td>
</tr>
<tr>
<td>10+ years</td>
<td>0.607∗0.013</td>
<td>0.2700.052</td>
</tr>
<tr>
<td>12+ years</td>
<td>0.016 (0.026)</td>
<td>-0.0420.009</td>
</tr>
<tr>
<td>15+ years</td>
<td>0.052 (0.027)</td>
<td>-0.0680.009</td>
</tr>
<tr>
<td>17+ years</td>
<td>0.045 (0.056)</td>
<td>-0.0100.052</td>
</tr>
</tbody>
</table>

Caste fixed effects? Yes
State fixed effects? Yes
N (women) 627
R-squared 0.201

A.V. Chari, A. Maertens, S.V. Srinivasan
Income Inequality and Marital Outcomes
September 29-30, 2014
Human capital implications of delayed marriage (ever-married sample)

Impact on completed years of education

\[EduYears_{ics} = \beta_1(e^{90} - e^{50}) + \beta_2(e^{50} - e^{10}) + \beta_3e^{50} + \eta_c + \eta_s + u_{ics} \]
Human capital implications of delayed marriage (ever-married sample)

Impact on completed years of education

\[EduYears_{ics} = \beta_1(e^{90} - e^{50}) + \beta_2(e^{50} - e^{10}) + \beta_3e^{50} + \eta_c + \eta_s + u_{ics} \]

Identify level where additional education accrues

\[level_{ics} = \beta_1(e^{90} - e^{50}) + \beta_2(e^{50} - e^{10}) + \beta_3e^{50} + \eta_c + \eta_s + u_{ics} \]
Human capital implications of delayed marriage (ever-married sample)

Impact on completed years of education

$$EduYears_{ics} = \beta_1 (e^{90} - e^{50}) + \beta_2 (e^{50} - e^{10}) + \beta_3 e^{50} + \eta_c + \eta_s + u_{ics}$$

Identify level where additional education accrues

$$level_{ics} = \beta_1 (e^{90} - e^{50}) + \beta_2 (e^{50} - e^{10}) + \beta_3 e^{50} + \eta_c + \eta_s + u_{ics}$$

Women attain more education, at high school/college
Human capital implications of delayed marriage (ever-married sample)

Impact on completed years of education

\[EduYears_{ics} = \beta_1 (e^{90} - e^{50}) + \beta_2 (e^{50} - e^{10}) + \beta_3 e^{50} + \eta_c + \eta_s + u_{ics} \]

Identify level where additional education accrues

\[level_{ics} = \beta_1 (e^{90} - e^{50}) + \beta_2 (e^{50} - e^{10}) + \beta_3 e^{50} + \eta_c + \eta_s + u_{ics} \]

Women attain more education, at high school/college

- Women accrue 0.6 additional years of education

<table>
<thead>
<tr>
<th>Years of education</th>
<th>Male earnings: 90th-50th percentile</th>
<th>Male earnings: 50th-10th percentile</th>
<th>Male earnings: 50th percentile</th>
<th>Caste fixed effects?</th>
<th>State fixed effects?</th>
<th>N (women)</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.607*</td>
<td>0.270</td>
<td>-0.656</td>
<td>Yes</td>
<td>Yes</td>
<td>627</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>(0.313)</td>
<td>(0.590)</td>
<td>(0.541)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Human capital implications of delayed marriage (ever-married sample)

Impact on completed years of education

\[EduYears_{ics} = \beta_1 (e^{90} - e^{50}) + \beta_2 (e^{50} - e^{10}) + \beta_3 e^{50} + \eta_c + \eta_s + u_{ics} \]

Identify level where additional education accrues

\[level_{ics} = \beta_1 (e^{90} - e^{50}) + \beta_2 (e^{50} - e^{10}) + \beta_3 e^{50} + \eta_c + \eta_s + u_{ics} \]

Women attain more education, at high school/college

- Women accrue 0.6 additional years of education
- Complete high school; Matriculate into college

<table>
<thead>
<tr>
<th>Years of education</th>
<th>Any education</th>
<th>5+ years</th>
<th>8+ years</th>
<th>10+ years</th>
<th>12+ years</th>
<th>15+ years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 90th-50th percentile</td>
<td>0.607*</td>
<td>(0.313)</td>
<td>0.013</td>
<td>0.016</td>
<td>0.052</td>
<td>0.042</td>
</tr>
<tr>
<td>Male earnings: 50th-10th percentile</td>
<td>0.270</td>
<td>(0.590)</td>
<td>0.052</td>
<td>0.035</td>
<td>-0.042</td>
<td>0.009</td>
</tr>
<tr>
<td>Male earnings: 50th percentile</td>
<td>-0.656</td>
<td>(0.541)</td>
<td>-0.124**</td>
<td>-0.104**</td>
<td>-0.068</td>
<td>-0.065</td>
</tr>
<tr>
<td>Caste fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N (women)</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.201</td>
<td>0.139</td>
<td>0.130</td>
<td>0.164</td>
<td>0.176</td>
<td>0.167</td>
</tr>
</tbody>
</table>
Human capital implications of delayed marriage (ever-married sample)

Impact on completed years of education

\[EduYears_{ics} = \beta_1(e^{90} - e^{50}) + \beta_2(e^{50} - e^{10}) + \beta_3 e^{50} + \eta_c + \eta_s + u_{ics} \]

Identify level where additional education accrues

\[level_{ics} = \beta_1(e^{90} - e^{50}) + \beta_2(e^{50} - e^{10}) + \beta_3 e^{50} + \eta_c + \eta_s + u_{ics} \]

Women attain more education, at high school/college

- Women accrue 0.6 additional years of education
- Complete high school; Matriculate into college

<table>
<thead>
<tr>
<th>Years of education</th>
<th>Any education</th>
<th>5+ years</th>
<th>8+ years</th>
<th>10+ years</th>
<th>12+ years</th>
<th>15+ years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 90th-50th percentile</td>
<td>0.607*</td>
<td>0.013</td>
<td>0.016</td>
<td>0.052</td>
<td>0.042</td>
<td>0.076***</td>
</tr>
<tr>
<td></td>
<td>(0.313)</td>
<td>(0.026)</td>
<td>(0.027)</td>
<td>(0.035)</td>
<td>(0.029)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Male earnings: 50th-10th percentile</td>
<td>0.270</td>
<td>0.052</td>
<td>0.035</td>
<td>-0.042</td>
<td>0.009</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>(0.590)</td>
<td>(0.047)</td>
<td>(0.049)</td>
<td>(0.066)</td>
<td>(0.060)</td>
<td>(0.058)</td>
</tr>
<tr>
<td>Male earnings: 50th percentile</td>
<td>-0.656</td>
<td>-0.124**</td>
<td>-0.104**</td>
<td>-0.068</td>
<td>-0.065</td>
<td>-0.041</td>
</tr>
<tr>
<td></td>
<td>(0.541)</td>
<td>(0.051)</td>
<td>(0.048)</td>
<td>(0.047)</td>
<td>(0.045)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Caste fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N (women)</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.201</td>
<td>0.139</td>
<td>0.130</td>
<td>0.164</td>
<td>0.176</td>
<td>0.167</td>
</tr>
</tbody>
</table>
Conclusion

Earnings inequality impacts female marital outcomes in India
- Increases in upper-half inequality delay marriage; no effect from lower-half
- Results robust to alternative hypotheses, measures, regression samples
Earnings inequality impacts female marital outcomes in India
· Increases in upper-half inequality delay marriage; no effect from lower-half
· Results robust to alternative hypotheses, measures, regression samples

Corresponding effect on educational attainment, at higher levels
Thank you!
Women marry within their community and settle nearby.
AH1: Male marriage uncorrelated with female earnings dispersion

<table>
<thead>
<tr>
<th>Probability of marriage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female earnings: 90<sup>th</sup>-50<sup>th</sup> percentile</td>
<td>-0.001 (0.004)</td>
</tr>
<tr>
<td>Female earnings: 50<sup>th</sup>-10<sup>th</sup> percentile</td>
<td>-0.004 (0.008)</td>
</tr>
<tr>
<td>Female earnings: 50<sup>th</sup> percentile</td>
<td>0.020 (0.012)</td>
</tr>
<tr>
<td>Age of man (years)</td>
<td>0.047*** (0.000)</td>
</tr>
</tbody>
</table>

Community fixed effects? Yes
State fixed effects? Yes
N (men) 37,841
R-squared 0.546
AH2: Women in high-inequality markets are not observably different
AH2: Women in high-inequality markets are not observably different

<table>
<thead>
<tr>
<th></th>
<th>Age at menarche</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 90<sup>th</sup>-50<sup>th</sup> percentile</td>
<td>0.035</td>
<td>1.106</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(1.310)</td>
</tr>
<tr>
<td>Male earnings: 50<sup>th</sup>-10<sup>th</sup> percentile</td>
<td>0.153</td>
<td>-0.831</td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td>(3.878)</td>
</tr>
<tr>
<td>Male earnings: 50<sup>th</sup> percentile</td>
<td>0.091</td>
<td>1.590</td>
</tr>
<tr>
<td></td>
<td>(0.237)</td>
<td>(3.706)</td>
</tr>
</tbody>
</table>

Community fixed effects? Yes Yes
State fixed effects? Yes Yes
N (women) 646 646
R-squared 0.235 0.086
AH2: Women in high-inequality markets are not observably different

<table>
<thead>
<tr>
<th></th>
<th>Age at menarche</th>
<th>Height (cm)</th>
<th>Age at marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 90^{th}-50^{th} percentile</td>
<td>0.035</td>
<td>1.106</td>
<td>0.335***</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(1.310)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>Male earnings: 50^{th}-10^{th} percentile</td>
<td>0.153</td>
<td>-0.831</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td>(3.878)</td>
<td>(0.289)</td>
</tr>
<tr>
<td>Male earnings: 50^{th} percentile</td>
<td>0.091</td>
<td>1.590</td>
<td>-0.489**</td>
</tr>
<tr>
<td></td>
<td>(0.237)</td>
<td>(3.706)</td>
<td>(0.240)</td>
</tr>
<tr>
<td>Age at menarche</td>
<td></td>
<td></td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.060)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td></td>
<td></td>
<td>0.006**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>Community fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N (women)</td>
<td>646</td>
<td>646</td>
<td>646</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.235</td>
<td>0.086</td>
<td>0.180</td>
</tr>
</tbody>
</table>
AH3: Men are not absent from marriage market

<table>
<thead>
<tr>
<th>Male earnings: 90^{th}-50^{th} percentile</th>
<th>Probability of marriage</th>
<th>Age at marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 50^{th}-10^{th} percentile</td>
<td>-0.014**</td>
<td>0.339***</td>
</tr>
<tr>
<td>Male earnings: 50th percentile</td>
<td>0.002</td>
<td>0.048</td>
</tr>
<tr>
<td>Age of woman (years)</td>
<td>0.068***</td>
<td></td>
</tr>
<tr>
<td>Male:Female ratio</td>
<td>0.044***</td>
<td>-0.239</td>
</tr>
</tbody>
</table>

Community fixed effects? Yes Yes
State fixed effects? Yes Yes
N (women) 25,530 644
R-squared 0.451 0.174
AH4: Male earnings not proxying for female earnings

<table>
<thead>
<tr>
<th></th>
<th>Probability of marriage</th>
<th>Age at marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 90th-50th percentile</td>
<td>-0.021***</td>
<td>0.467***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.139)</td>
</tr>
<tr>
<td>Male earnings: 50th-10th percentile</td>
<td>-0.012</td>
<td>0.191</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.312)</td>
</tr>
<tr>
<td>Male earnings: 50th percentile</td>
<td>0.010</td>
<td>-0.328</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.274)</td>
</tr>
<tr>
<td>Age of woman (years)</td>
<td>0.068***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Female earnings: 90th-50th percentile</td>
<td>0.012**</td>
<td>-0.283</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.182)</td>
</tr>
<tr>
<td>Female earnings: 50th-10th percentile</td>
<td>-0.006</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.321)</td>
</tr>
<tr>
<td>Female earnings: 50th percentile</td>
<td>0.017</td>
<td>-0.581</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.527)</td>
</tr>
<tr>
<td>Community fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N (women)</td>
<td>25,550</td>
<td>646</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.451</td>
<td>0.179</td>
</tr>
</tbody>
</table>
AH5: Wedding expenditures are not prohibitive

<table>
<thead>
<tr>
<th>Male earnings: $90^{th}-50^{th}$ percentile</th>
<th>Probability of marriage</th>
<th>Age at marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.013**</td>
<td>0.386***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.129)</td>
</tr>
<tr>
<td>Male earnings: $50^{th}-10^{th}$ percentile</td>
<td>-0.005</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.281)</td>
</tr>
<tr>
<td>Male earnings: 50^{th} percentile</td>
<td>0.011</td>
<td>-0.506**</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.230)</td>
</tr>
<tr>
<td>Age of woman (years)</td>
<td>0.068***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Wedding expenditure</td>
<td>-0.003</td>
<td>-0.041</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.076)</td>
</tr>
</tbody>
</table>

Community fixed effects? Yes Yes
State fixed effects? Yes Yes
N (women) 25,550 646
R-squared 0.451 0.175
Women with no education still delay marriage

Channel: Income inequality → education

<table>
<thead>
<tr>
<th></th>
<th>Age at marriage (1)</th>
<th>Age at marriage (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 90th-50th percentile</td>
<td>0.311***</td>
<td>0.311**</td>
</tr>
<tr>
<td></td>
<td>(0.117)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>Male earnings: 50th-10th percentile</td>
<td>-0.017</td>
<td>-0.076</td>
</tr>
<tr>
<td></td>
<td>(0.283)</td>
<td>(0.291)</td>
</tr>
<tr>
<td>Male earnings: 50th percentile</td>
<td>-0.377</td>
<td>-0.348</td>
</tr>
<tr>
<td></td>
<td>(0.231)</td>
<td>(0.236)</td>
</tr>
<tr>
<td>Female no education indicator</td>
<td>-0.868***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.224)</td>
<td></td>
</tr>
<tr>
<td>Female less than primary indicator</td>
<td></td>
<td>-0.934***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.205)</td>
</tr>
<tr>
<td>Male 90th-50th * No education</td>
<td>0.282</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.239)</td>
<td></td>
</tr>
<tr>
<td>Male 50th-10th * No education</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td></td>
</tr>
<tr>
<td>Male 90th-50th * Less than primary</td>
<td></td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.217)</td>
</tr>
<tr>
<td>Male 50th-10th * Less than primary</td>
<td></td>
<td>0.287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.169)</td>
</tr>
<tr>
<td>Net effect</td>
<td>0.593**</td>
<td>0.494**</td>
</tr>
<tr>
<td></td>
<td>(0.236)</td>
<td>(0.209)</td>
</tr>
</tbody>
</table>

Community fixed effects? Yes
State fixed effects? Yes
N (women) 627
R-squared 0.202
Education outcomes unchanged for young girls

<table>
<thead>
<tr>
<th></th>
<th>Currently enrolled in school</th>
<th>Completed years of education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male earnings: 90<sup>th</sup>-50<sup>th</sup> percentile</td>
<td>0.011 (0.012)</td>
<td>0.023 (0.017)</td>
</tr>
<tr>
<td>Male earnings: 50<sup>th</sup>-10<sup>th</sup> percentile</td>
<td>0.023 (0.018)</td>
<td>0.001 (0.039)</td>
</tr>
<tr>
<td>Male earnings: 50<sup>th</sup> percentile</td>
<td>-0.045 (0.024)</td>
<td>-0.022 (0.054)</td>
</tr>
<tr>
<td>Age of woman (years)</td>
<td>0.219*** (0.003)</td>
<td>0.389*** (0.014)</td>
</tr>
<tr>
<td>Community fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State fixed effects?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N (girls)</td>
<td>19,446</td>
<td>19,446</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.552</td>
<td>0.571</td>
</tr>
</tbody>
</table>